924 research outputs found

    Failure-informed adaptive sampling for PINNs

    Full text link
    Physics-informed neural networks (PINNs) have emerged as an effective technique for solving PDEs in a wide range of domains. It is noticed, however, the performance of PINNs can vary dramatically with different sampling procedures. For instance, a fixed set of (prior chosen) training points may fail to capture the effective solution region (especially for problems with singularities). To overcome this issue, we present in this work an adaptive strategy, termed the failure-informed PINNs (FI-PINNs), which is inspired by the viewpoint of reliability analysis. The key idea is to define an effective failure probability based on the residual, and then, with the aim of placing more samples in the failure region, the FI-PINNs employs a failure-informed enrichment technique to adaptively add new collocation points to the training set, such that the numerical accuracy is dramatically improved. In short, similar as adaptive finite element methods, the proposed FI-PINNs adopts the failure probability as the posterior error indicator to generate new training points. We prove rigorous error bounds of FI-PINNs and illustrate its performance through several problems.Comment: 21 pages, 18 figure

    ISBORD: Internet Searching Based on Resource Description

    Get PDF
    Based on the Information-Centric Networking (ICN) concept and the mature model of the current TCP/IP-based Internet, we propose content searching based on universal and scalable resource description, namely ISBORD (Internet Searching based on Resource Description). This novel concept aims to improve the efficiency of content searching and simplifies the end-user functionality to support the evolution of the content-centric Internet

    Adaptive operator learning for infinite-dimensional Bayesian inverse problems

    Full text link
    The fundamental computational issues in Bayesian inverse problems (BIPs) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such cost is to replace expensive model simulations by computationally efficient approximations using operator learning, motivated by recent progresses in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by fine-tuning the pre-trained approximate model during the inversion process with adaptive points selected by a greedy algorithm, which requires only a few forward model evaluations. To validate our approach, we adopt DeepOnet to construct the surrogate and use unscented Kalman inversion (UKI) to approximate the solution of BIPs, respectively. Furthermore, we present rigorous convergence guarantee in the linear case using the framework of UKI. We test the approach on several benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction diffusion problems. Numerical results demonstrate that our method can significantly reduce computational costs while maintaining inversion accuracy

    Unseen Image Synthesis with Diffusion Models

    Full text link
    While the current trend in the generative field is scaling up towards larger models and more training data for generalized domain representations, we go the opposite direction in this work by synthesizing unseen domain images without additional training. We do so via latent sampling and geometric optimization using pre-trained and frozen Denoising Diffusion Probabilistic Models (DDPMs) on single-domain datasets. Our key observation is that DDPMs pre-trained even just on single-domain images are already equipped with sufficient representation abilities to reconstruct arbitrary images from the inverted latent encoding following bi-directional deterministic diffusion and denoising trajectories. This motivates us to investigate the statistical and geometric behaviors of the Out-Of-Distribution (OOD) samples from unseen image domains in the latent spaces along the denoising chain. Notably, we theoretically and empirically show that the inverted OOD samples also establish Gaussians that are distinguishable from the original In-Domain (ID) samples in the intermediate latent spaces, which allows us to sample from them directly. Geometrical domain-specific and model-dependent information of the unseen subspace (e.g., sample-wise distance and angles) is used to further optimize the sampled OOD latent encodings from the estimated Gaussian prior. We conduct extensive analysis and experiments using pre-trained diffusion models (DDPM, iDDPM) on different datasets (AFHQ, CelebA-HQ, LSUN-Church, and LSUN-Bedroom), proving the effectiveness of this novel perspective to explore and re-think the diffusion models' data synthesis generalization ability.Comment: 28 pages including appendice

    Boundary Guided Mixing Trajectory for Semantic Control with Diffusion Models

    Full text link
    Applying powerful generative denoising diffusion models (DDMs) for downstream tasks such as image semantic editing usually requires either fine-tuning pre-trained DDMs or learning auxiliary editing networks. In this work, we achieve SOTA semantic control performance on various application settings by optimizing the denoising trajectory solely via frozen DDMs. As one of the first optimization-based diffusion editing work, we start by seeking a more comprehensive understanding of the intermediate high-dimensional latent spaces by theoretically and empirically analyzing their probabilistic and geometric behaviors in the Markov chain. We then propose to further explore the critical step in the denoising trajectory that characterizes the convergence of a pre-trained DDM. Last but not least, we further present our method to search for the semantic subspaces boundaries for controllable manipulation, by guiding the denoising trajectory towards the targeted boundary at the critical convergent step. We conduct extensive experiments on various DPMs architectures (DDPM, iDDPM) and datasets (CelebA, CelebA-HQ, LSUN-church, LSUN-bedroom, AFHQ-dog) with different resolutions (64, 256) as empirical demonstrations.Comment: 24 pages including appendices, code will be available at https://github.com/L-YeZhu/BoundaryDiffusio
    • …
    corecore